Telegram Group & Telegram Channel
VSML [2021] - встречайте настоящие искусственные нейронные сети

Авторы во многом мотивируются мыслями, похожими на мои предыдущие посты - раз, два, три.

1) Они бросают вызов фиксированному алгоритму обучения. Backprop, апдейт весов и всё прочее задаётся человеком вручную. Если мы сможем обучать эти вещи, оптимизируя обучаемость, мы получим Meta-Learning.

2) Авторы обращают внимание, что есть 2 размерности - V_M и V_L. V_M - это размерность заданного пространства обучающих алгоритмов. А V_L - это размерность пространства "состояний" алгоритма. В случае нейросетей это количество весов. Авторы пишут - чтобы мета-алгоритм не был переобучен под семейство задач, V_L должно быть гораздо больше V_M.

И тут, в отличие от меня, авторы смогли придумать подход.

Будем обучать рекуррентную сеть с ячейками памяти, типа GRU. Но обычно у нас количество весов в ней квадратично к размеру памяти. Поэтому будем обучать много таких GRU с пошаренными весами. Сделаем из них многослойную конструкцию со связями между разными слоями в обе стороны и внутри слоя, так, чтобы у модели в теории была возможность повторить backprop. В результате у всей модели 2400 весов, а память на 257000 чисел.

Далее применяем генетический алгоритм! Как будем оценивать образцы? Будем показывать этой системе объекты (например, картинки из MNIST), считывать предсказание из последнего слоя, подавать на вход ошибку, и так много раз. В конце будем тестировать её предсказания и таким образом оценивать обучаемость.

Самая потрясающая часть - это результаты сравнения с традиционным meta-rl-подходом. Когда мы сетку, обученную обучаться на MNIST, применяем на совсем другом датасете, она работает! Они обучали разные алгоритмы на 6 датасетах, тестировали на всех остальных, и везде абсолютно одинаковая картина - бейзлайн показывает ~0, а VSML работает на приличном уровне.

Я уверен, что это направление исследований и приведёт нас к настоящему интеллекту, когда идея будет отмасштабирована и применена на правильной задаче.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/83
Create:
Last Update:

VSML [2021] - встречайте настоящие искусственные нейронные сети

Авторы во многом мотивируются мыслями, похожими на мои предыдущие посты - раз, два, три.

1) Они бросают вызов фиксированному алгоритму обучения. Backprop, апдейт весов и всё прочее задаётся человеком вручную. Если мы сможем обучать эти вещи, оптимизируя обучаемость, мы получим Meta-Learning.

2) Авторы обращают внимание, что есть 2 размерности - V_M и V_L. V_M - это размерность заданного пространства обучающих алгоритмов. А V_L - это размерность пространства "состояний" алгоритма. В случае нейросетей это количество весов. Авторы пишут - чтобы мета-алгоритм не был переобучен под семейство задач, V_L должно быть гораздо больше V_M.

И тут, в отличие от меня, авторы смогли придумать подход.

Будем обучать рекуррентную сеть с ячейками памяти, типа GRU. Но обычно у нас количество весов в ней квадратично к размеру памяти. Поэтому будем обучать много таких GRU с пошаренными весами. Сделаем из них многослойную конструкцию со связями между разными слоями в обе стороны и внутри слоя, так, чтобы у модели в теории была возможность повторить backprop. В результате у всей модели 2400 весов, а память на 257000 чисел.

Далее применяем генетический алгоритм! Как будем оценивать образцы? Будем показывать этой системе объекты (например, картинки из MNIST), считывать предсказание из последнего слоя, подавать на вход ошибку, и так много раз. В конце будем тестировать её предсказания и таким образом оценивать обучаемость.

Самая потрясающая часть - это результаты сравнения с традиционным meta-rl-подходом. Когда мы сетку, обученную обучаться на MNIST, применяем на совсем другом датасете, она работает! Они обучали разные алгоритмы на 6 датасетах, тестировали на всех остальных, и везде абсолютно одинаковая картина - бейзлайн показывает ~0, а VSML работает на приличном уровне.

Я уверен, что это направление исследований и приведёт нас к настоящему интеллекту, когда идея будет отмасштабирована и применена на правильной задаче.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/83

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

Pinterest (PINS) Stock Sinks As Market Gains

Pinterest (PINS) closed at $71.75 in the latest trading session, marking a -0.18% move from the prior day. This change lagged the S&P 500's daily gain of 0.1%. Meanwhile, the Dow gained 0.9%, and the Nasdaq, a tech-heavy index, lost 0.59%. Heading into today, shares of the digital pinboard and shopping tool company had lost 17.41% over the past month, lagging the Computer and Technology sector's loss of 5.38% and the S&P 500's gain of 0.71% in that time. Investors will be hoping for strength from PINS as it approaches its next earnings release. The company is expected to report EPS of $0.07, up 170% from the prior-year quarter. Our most recent consensus estimate is calling for quarterly revenue of $467.87 million, up 72.05% from the year-ago period.

How to Buy Bitcoin?

Most people buy Bitcoin via exchanges, such as Coinbase. Exchanges allow you to buy, sell and hold cryptocurrency, and setting up an account is similar to opening a brokerage account—you’ll need to verify your identity and provide some kind of funding source, such as a bank account or debit card. Major exchanges include Coinbase, Kraken, and Gemini. You can also buy Bitcoin at a broker like Robinhood. Regardless of where you buy your Bitcoin, you’ll need a digital wallet in which to store it. This might be what’s called a hot wallet or a cold wallet. A hot wallet (also called an online wallet) is stored by an exchange or a provider in the cloud. Providers of online wallets include Exodus, Electrum and Mycelium. A cold wallet (or mobile wallet) is an offline device used to store Bitcoin and is not connected to the Internet. Some mobile wallet options include Trezor and Ledger.

Knowledge Accumulator from ua


Telegram Knowledge Accumulator
FROM USA